IV Semester M.Sc. Examination, June 2016 (RNS)
 MATHEMATICS
 M-401 : Measure and Integration

Time : 3 Hours
Max. Marks : 80
Instructions: i) Answer any five questions choosing atleast two from each Part.
ii) All questions carry equal marks.
PART-A

1. a) Define a Borel set, for any singleton set $\{x\}$ prove that $m^{*}(\{x\})=0$.
b) Show that the Lebesgue measure of an interval is equal to its length. Hence prove that the interval $[0,1]$ is uncountable.
c) Define a measurable set. Show that the union of two measurable sets are measurable.
2. a) Show that $m_{e}(A) \geq m_{i}(A)$ for any set A.
b) State and prove countably additive property of Lebesgue measurable sets.
c) Let A be any subset of \mathbb{R}. If $E_{1}, E_{2}, \ldots E_{n}$ are disjoint Lebesgue measurable sets then prove that $m *\left(A \cap\left(\bigcup_{i=1}^{n} E_{i}\right)\right)=\sum_{i=1}^{n} m^{*}\left(A \cap E_{i}\right)$
3. a) If f and g are two measurable real valued functions defined on the same domain then, prove that $f+c, c f, f+g, f-g, f^{2}, f g$ are also measurable.
b) Let f be a measurable function and B be a Borel. Then prove that $f^{-1}(B)$ is a measurable set.
4. a) Let E be a Lebesgue measurable set with finite measure. For a given $\in>0$, prove that there exists a finite union ' U ' of open intervals such that $m(E \Delta U)<\epsilon$ where $E \Delta U=(E-U) U(U-E)$.
b) Let f be a measurable function and g be a function defined over a measurable set E. Such that $f=g$ a.e. on E. Then prove that g is measurable.
c) If a sequence $\left\{f_{n}\right\}$ converges in measure to f then prove the following :
i) $\left\{f_{n}\right\}$ converges in measure to every function g which is equivalent to f.
ii) The limit function f is unique a.e.
PART-B
5. a) If f and g are bounded measurable function defined on a set is finite then
i) $\int_{E} a f+b g=a \int_{E} f+b \int_{E} g$
ii) If $f=g$ almost everywhere then $\int_{E} f=\int_{E} g$.
iii) If $f \leq g$ almost everywhere $\int_{E} f \leq \int_{E} g$ and $\left|\int_{E} f \leq \int_{E}\right| f \mid$.
iv) If $A \leq f(x) \leq B$ then
A. m (E) $\int_{E} f \leq B . m(E)$.
v) If A and B are disjoint measurable sets then $\int_{A \cup B} f=\int_{A} f+\int_{B} f$.
b) State and prove Fatou's Lemma.
6. a) Let f be a non-negative function which is integrable over a set E. Then prove that for a given $\in>0$ there is a $\partial>0$ such that for every set $A \subset E$ with $\mathrm{mA}<\delta$ are have $\int_{\mathrm{A}} \mathrm{f}<\varepsilon$.
b) If f and g are integrable over E then prove that
i) The function cf is integrable over E and $\int_{E} c f=c \int_{E} f$.
ii) The function $f+g$ is integrable over E and $\int_{E} f+g=\int_{E} f+\int_{E} g$.
c) State and prove Lebesgue convergence theorem.
7. a) Establish Vitali covering Lemma. 9
b) Define a function of bounded variation. If f is a function of bounded variation on $[a, b]$, then prove that $T_{a}^{b}=P_{a}^{b}+N_{a}^{b}$ and $f(b)-f(a)=P_{a}^{b}-N_{a}^{b}$.
8. a) Prove that $\mathrm{L}^{\mathrm{p}}(1 \leq \mathrm{p} \leq \infty)$ spaces are complete.
b) State and prove Riesz representation theorem.
