P.T.O.

IV Semester M.Sc. Examination, June 2016 (RNS) MATHEMATICS M-401 : Measure and Integration

Time : 3 Hours

Instructions : i) Answer any five questions choosing atleast two from each Part. ii) All questions carry equal marks.

PART-A

1.	a)	Define a Borel set, for any singleton set $\{x\}$ prove that $m^*(\{x\}) = 0$.	4
	b)	Show that the Lebesgue measure of an interval is equal to its length. Hence prove that the interval [0,1] is uncountable.	8
	c)	Define a measurable set. Show that the union of two measurable sets are measurable.	4
2.	a)	Show that $m_e(A) \ge m_i(A)$ for any set A.	3
	b)	State and prove countably additive property of Lebesgue measurable sets.	6
	c)	Let A be any subset of ${\rm I\!R}$. If ${\rm E_1}, {\rm E_2}, \dots {\rm E_n}$ are disjoint Lebesgue measurable	
		sets then prove that $m * \left(A \cap \left(\bigcup_{i=1}^{n} E_i \right) \right) = \sum_{i=1}^{n} m * (A \cap E_i)$	7
3.	a)	If f and g are two measurable real valued functions defined on the same domain then, prove that $f + c$, cf, $f + g$, $f - g$, f^2 , fg are also measurable.	8
	b)	Let f be a measurable function and B be a Borel. Then prove that $f^{-1}(B)$ is a measurable set.	8

PG - 830

Max. Marks : 80

PG - 830

- 4. a) Let E be a Lebesgue measurable set with finite measure. For a given ∈>0, prove that there exists a finite union 'U' of open intervals such that m (E ΔU)< ∈ where E ΔU = (E − U) U (U − E).
 - b) Let f be a measurable function and g be a function defined over a measurable set E. Such that f = g a.e. on E. Then prove that g is measurable.
 - c) If a sequence $\{f_n\}$ converges in measure to f then prove the following :
 - i) $\{f_n\}$ converges in measure to every function g which is equivalent to f.
 - ii) The limit function f is unique a.e.

PART-B

5. a) If f and g are bounded measurable function defined on a set is finite then

i)
$$\int_{E} af + bg = a \int_{E} f + b \int_{E} g$$

ii) If f = g almost everywhere then $\int_{E}^{f} f = \int_{E}^{g} g$.

iii) If
$$f \leq g$$
 almost everywhere $\int_{E}^{f} f \leq \int_{E}^{g} g$ and $\left| \int_{E}^{f} f \right| \leq \int_{E}^{|f|} f|$.

iv) If
$$A \le f(x) \le B$$
 then

A. m (E)
$$\int_{E} f \le B. m(E)$$

v) If A and B are disjoint measurable sets then $\int_{A \cup B} f = \int_{A} f + \int_{B} f$. **10**

- b) State and prove Fatou's Lemma.
- 6. a) Let f be a non-negative function which is integrable over a set E. Then prove that for a given $\in > 0$ there is a $\partial > 0$ such that for every set A \subset E with mA < δ are have $\int_{A} f < \varepsilon$.

5

7

4

6

6

6

9

9

- b) If f and g are integrable over E then prove that
 - i) The function cf is integrable over E and $\int_{E} cf = c \int_{E} f$.
 - ii) The function f + g is integrable over E and $\int_{E}^{f} f + g = \int_{E}^{f} f + \int_{E}^{g} g$. 4
- c) State and prove Lebesgue convergence theorem.
- 7. a) Establish Vitali covering Lemma.
 - b) Define a function of bounded variation. If f is a function of bounded variation on [a, b], then prove that $T_a^b = P_a^b + N_a^b$ and f (b) f (a) = $P_a^b N_a^b$. 7
- 8. a) Prove that $L^p (1 \le p \le \infty)$ spaces are complete. **7**
 - b) State and prove Riesz representation theorem.